
CCCG 2025, Toronto, Canada, August 11–15, 2025

Entropy-Bounded Computational Geometry
Made Easier and Sensitive to Sortedness∗

David Eppstein Michael T. Goodrich Abraham M. Illickan Claire A. To

Department of Computer Science, University of California, Irvine

Abstract

We study entropy-bounded computational geometry,
that is, geometric algorithms whose running times
depend on a given measure of the input entropy.
Specifically, we introduce a measure that we call range-
partition entropy, which unifies and subsumes previ-
ous definitions of entropy used for sorting problems and
structural entropy used in computational geometry. We
provide simple algorithms for several problems, includ-
ing 2D maxima, 2D and 3D convex hulls, and some
visibility problems, and we show that they have running
times depending on the range-partition entropy.

1 Introduction

Beyond worst-case algorithm design is directed
at designing algorithms whose running time is asymp-
totically the best possible relative to some metric
of the input instance [17, 18], and there has been
considerable work done, for example, on instance-
optimal sorting algorithms; see, e.g., [2–4, 8, 11, 15, 19,
20]. Focusing on the sorting problem for a moment, let
X = [x1, x2, . . . , xn] be an input sequence of distinct
elements that come from a total order, and let R =
{R1, R2, . . . , Rρ(X)} be a division of X into a set of
maximal increasing or decreasing runs (i.e., consecutive
elements in X). These previous papers define a type of
entropy, H(X), for a set of elements, X, divided into
runs as follows [2–4,8, 11,15,19,20]:

H(X) = −
ρ(X)∑
i=1

(
|Ri|
n

)
log

(
|Ri|
n

)
.

Sequential comparison-based sorting has a runtime
lower bound of Ω(n(1 + H(X))), and many instance-
optimal sorting algorithms have running time
O(n(1 + H(X))), which can be as small as O(n)
depending on the input instance. For example, Auger,
Jugé, Nicaud, and Pivoteau [2] show that the popular
TimSort algorithm has this time, and similarly efficient
stack-based mergesort algorithms have been given by
Munro and Wild [15], Jugé [11], Gelling, Nebel, Smith,

∗This research was supported in part by NSF grant 2212129.

and Wild [8], Buss and Knop’ [4], Takaoka [20], and
Barbay and Navarro [3]. At CCCG’24, Schou and
Wang introduce PersiSort [19], which also has this
running time. Still, we are not aware of any work
on geometric problems beyond sorting that concern
instance optimality with respect to run-based entropy.

Instead, given an input, S, to a geometric problem,
such as convex hull or maxima set, Afshani, Barbay, and
Chan [1] introduce the structural entropy, H(S) for S,
and they provide algorithms that run in O(n(1+H(S)))
time for several such problems, where n is the size of
the input, including 2D maxima and 2D and 3D convex
hulls. In contrast to the entropy used for the sorting
problem, however, structural entropy explicitly ignores
any near-sortedness in the input, such as can occur, e.g.,
with convex polygons or monotone polygonal chains.

Our Results. In this paper, we introduce a unification
of the entropy used for sorting and the structural
entropy of Afshani et al. [1], which we call range-
partition entropy. This unification applied even
for problems that do not have obvious structural en-
tropy: for instance, in the visibility and lower-envelope
problems we study, range-partition entropy equals the
entropy of an embedded sorting problem. In other
cases, such as for 3D convex hulls, sortedness provides
no obvious advantage, and case range-partition entropy
reduces to the structural entropy of Afshani et al.

We provide simple algorithms whose running times
depend on the range-partiton entropy, H(S), of an input
set of points, S. For example, we give algorithms for
computing maxima sets and convex hulls for n points
in the plane in O(n(1 + H(S))) time. These algorithms
perform no worse than any other algorithm for any
input on their respective worst permutations, while
also taking advantage of sortedness in the input. We
also show how to adapt any instance-optimal natural
mergesort to compute the lower envelope of monotone
polygonal chains or the visibility polygon of a point
inside a convex polygon with convex holes in time that
depends on the range-partition entropy. In addition, we
give a simple randomized algorithm for computing the
convex hull of n points in R3 and show its expected
running time to be O(n(1 + H(S))).

37th Canadian Conference on Computational Geometry, 2025

2 Range-Partition Entropy

Let S = (p1, p2, . . . , pn) be the set of n points in
Rd input in this given order, for constant d ≥ 1.
Define a range partition of S to be a set, Π =
{(S1, R1), (S2, R2), . . . , (St, Rt)}, such that

1. The Si’s form a partition of S, i.e., S =
⋃t

i=1 Si

and Si ∩ Sj = ∅ for i ̸= j.

2. The Ri’s are geometric ranges, such as intervals in
R, axis-aligned rectangles inR2, triangles inR2, or
tetrahedra in R3, such that the set, Si, is contained
in the range, Ri.

For example, if S is a set of points in R2, then Π could
be a partition of S into subsets contained in a set of
axis-aligned rectangles, which form the ranges.

Given a sequence, S, of points inRd, and a range par-
tition, Π = {(S1, R1), . . . , (St, Rt)}, for S, we say that
Π is respectful if it satisfies the following constraints:

1. For each i = 1, 2, . . . , t, (Si, Ri) satisfies a given
local property, which depends only on Si and Ri.

2. For each i = 1, 2, . . . , t, (Si, Ri) satisfies a given
global compatibility property, which can depend
on the other pairs, (Sj , Rj), for j ̸= i.

Given a set, S, of n points in Rd, the entropy, H(Π),
of a partition, Π = {(S1, R1), . . . , (St, Rt)}, of S, is

H(Π) = −
t∑

i=1

(
|Si|
n

)
log

(
|Si|
n

)
.

The range-partition entropy, H(S), of S is the
minimum H(Π) over all respectful partitions, Π.

We reformulate the sorting problem in this framework
by considering the input sequence, S = (x1, x2, . . . , xn),
to be points in R, and we define a partition, Π =
{(S1, R1), . . . , (St, Rt)}, where each range, Ri, is an
interval, [a, b] ⊂ R. In this case, the local property
of each (Si, Ri) is that Si is a consecutive subsequence
of elements in S given in sorted order, and the global
property is that the Ri ranges are disjoint, i.e., Ri ∩
Rj = ∅ for i ̸= j. Accordingly, the minimum entropy,
H(Π), for all respectful partitions, Π, is determined
by a partition of the input sequence into maximal
non-decreasing or non-increasing runs. Thus, our
framework subsumes the notion of entropy used for the
sorting problem. Also, as we discuss in more detail
in subsequent sections, it also subsumes the structural
entropy introduced by Afshani et al. [1].

3 2D Maxima Set

The problem we study in this section is to find the
maxima set of a given set of points in the plane,

where a point is considered maximal if no other
point dominates it, having both greater x- and y-
coordinates. Our algorithm for this problem is a simple
a variant of Kirkpatrick and Seidel’s “marriage-before-
conquest” method [12], which was also studied by
Afshani et al. [1], except our algorithm takes advantage
of near-sortedness.

As preprocessing, we find the point pmax in S with
maximum x-coordinate, guaranteed to be a maximum
point. We prune from S any point dominated by pmax.
Our remaining algorithm begins by checking in linear
time if the input is sorted (e.g., by x- or y-coordinates).
If so, it computes the maxima set in linear time by a
simple plane-sweeping stack algorithm. Otherwise, in
linear time, we partition the points into left and right
subsets based on the median x-coordinate using a stable
method, we find and add to the maxima set a point
with largest y-coordinate in the right subset, and we
remove all points dominated by this point. Then our
algorithm recursively solves the maxima set problem for
the remaining points in the left and right subsets. See
Algorithm 1 in Appendix A.

Given an input sequence of n points, S,
in R2, define the constraints for a partition,
Π = {(S1, R1), . . . , (St, Rt)}, where each Ri is an
axis-aligned rectangle, to be respectful in the context
of computing the maxima set for S (Figure 1):

1. The local property for each (Si, Ri) is that Ri is
an axis-aligned rectangle containing Si and either
Si forms a sorted subsequence in S or the upper
right corner of Ri is dominated by some point in S.

2. The global compatibility property is that, for
i, j = 1, 2, . . . , t, if Ri is in not dominated by a
single point in S (which means Si is in sorted order
in S), then it will not intersect another range, Rj ,
for j ̸= i.

This generalizes the notion of structurally respectful
partitions from Afshani et al. [1], which is equivalent
to the local condition above for unsorted subsets. It
is easy to construct inputs whose structural entropy is
much higher than their range-partition entropy, such as
a set of n maxima points given in sorted order.

Theorem 1. Given a sequence, S, of n points in R2,
the 2DMaximaSet algorithm runs in O(n(1 + H(S)))
time, where H(S) is the range-partition entropy of S.

Proof. Let us analyze 2DMaximaSet via an
accounting argument where a constant amount of
work in our algorithm costs one cyber-dollar. Let
Π = {(S1, R1), . . . , (St, Rt)} be a respectful partition of
S with minimum range-partition entropy, H(S). Since
n(1 + H(S)) = n+ n(H(S)), let us focus on the term

n(H(S)) =
∑
Sk∈Π

|Sk| log(n/|Sk|).

CCCG 2025, Toronto, Canada, August 11–15, 2025

(a)

(b)

Figure 1: Respectful partitions. The points in the blue
shaded rectangle are sorted among themselves. (a) A
respectful partition without making use of the sorted
set. The entropy is 4

11 log
11
4 + 1

11 log 11 + 1
11 log 11 +

3
11 log

11
3 + 2

11 log
11
2 ≈ 2.118. (b) A respectful partition

making use of sets of both types. The entropy is
4
11 log

11
4 + 5

11 log
11
5 + 2

11 log
11
2 ≈ 1.495.

Thus, after charging each point in S one cyber-
dollar, we can show that 2DMaximaSet runs in time
O(n(1 + H(S))) by showing that the processing we
perform for each set, Sk ∈ Π, contributes at most
O(|Sk| log(n/|Sk|) + 1) additional cyber-dollars to the
running time of our algorithm. Let T denote the
recursion tree for 2DMaximaSet, where each node, v,
of T corresponds to a recursive call. Each node v of
T is associated with an interval, Iv = [av, bv], of x-
coordinates for points of S between discovered maximal
points for ancestors of v in T (or with bv = pmax for
each node, v, on the right spine of T).
So, consider a subset, Sk ∈ Π which has the local

property for unsorted sets. Say that Sk covers v if the
x-range for Rk spans Iv but not Iparent(v).

Sk is contained in an axis-aligned box, Rk, that is
strictly below the staircase. Thus, for any node, v in T ,
if Sk covers v, then all the points of Sk are removed from
any recursive calls associated with v or its descendants
in T , because they are all dominated by the upper-right
corner of Rk, which in turn is dominated by, or just is
the highest point to the right side of the interval and
was previously discovered to be a maxima point. If Sk

covers a node, v in T , then it does not participate in
any recursive calls for descendants of v in T . Thus, the
maximum number of points in Sk that survive to level
j in T is O(min{|Sk|, ⌈n/2j⌉}).

Now consider a set Sk that has the local property
for a sorted subset and its range, Rk. Sk also satisfies
the global compatibility condition for Sk. That is, Rk

is an axis-aligned box that contains Sk such that the
points of Sk are given in sorted order in S and there is
no other range intersecting Rk. We will consider Sk in
two parts. Let p be the rightmost point that is above

Rk. S
(ℓ)
k is the subset of Sk that is dominated by p.

S
(r)
k is the remaining subset. Let R

(ℓ)
k (similarly R

(r)
k)

be the rectangle that has the same y-range as Rk but

the minimum x-range such that it still contains S
(ℓ)
k

(similarly S
(r)
k). Say that S

(ℓ)
k (similarly S

(r)
k) covers v

if the x-range for R
(ℓ)
k (similarly R

(r)
k) spans Iv but not

Iparent(v).

If S
(ℓ)
k covers a node v in T , bv is p or above p

and all the points of S
(ℓ)
k have been pruned away

and are removed from any recursive calls associated
with v and its descendants. Thus, the maximum

number of points in S
(ℓ)
k that survive to level j in T

is O(min{|S(ℓ)
k |, ⌈n/2j⌉}).

If S
(r)
k covers a node v in T , av and bv are in

S
(r)
k , and no points above or below it remain in the

recursive call associated with v. Since S
(r)
k as a subset

of Sk is sorted by x-coordinate, during the recursive
call associated with v, our algorithm recognizes this
and computes the maxima set in linear time and there
are no more recursive calls. Thus, the maximum

number of points in S
(r)
k that survive to level j in T

is O(min{|S(r)
k |, ⌈n/2j⌉}).

Therefore, the maximum number of points in Sk

that survive to level j in T is O(min{|S(ℓ)
k |, ⌈n/2j⌉}) +

O(min{|S(r)
k |, ⌈n/2j⌉}) = O(min{|Sk|, ⌈n/2j⌉}).

Let nj denote the total number of points in S that
survive to level j in T , and note that the total time (in
cyber-dollars) charged to the 2DMaximaSet algorithm

is proportional to
∑⌈logn⌉

j=0 nj . The proof follows, then,
by the following:

⌈logn⌉∑
j=0

nj ≤
⌈logn⌉∑
j=0

∑
k

min
{
|Sk|, O

(n

2j

)}

≤
∑
k

⌈logn⌉∑
j=0

min
{
|Sk|, O

(n

2j

)}
≤

∑
k

O(|Sk|⌈log(n/|Sk|)⌉+ |Sk|+
|Sk|
2

+
|Sk|
4

+ · · ·+ 1)

≤
∑
k

O(|Sk|(⌈log(n/|Sk|)⌉+ 2)) ∈ O(n(H(Π) + 1))

37th Canadian Conference on Computational Geometry, 2025

4 2D Convex Hull

Here we apply a similar modification to leverage sort-
edness in 2D convex hulls. Finding the convex hull
in R2 involves identifying the smallest convex polygon
that encloses all input points and returning the ordered
subset of points that lie on the boundary. As with
maxima sets, our algorithm follows Kirkpatrick and
Seidel’s approach as presented in [1] with a modification
to check for sortedness.

The algorithm proceeds as follows. We begin by
computing the upper hull. To do this, we first prune
all points below the line connecting the leftmost and
rightmost points of the input. Check if the points
sorted. If they are sorted, find the convex hull in linear
time using Graham’s scan [9]. Otherwise, the points
are partitioned into two subsets based on the median
x-coordinate, using a stable method. Next, we identify
the two points that form the edge of the upper hull and
intersect the vertical line at the median x-coordinate.
This step can be done in linear time using the same
method as Kirkpatrick and Seidel [13]. All points below
this edge are not in the convex set and can be pruned.
Recursively solve each half. Finally, the convex hulls of
both subsets are concatenated to obtain the upper hull.
The lower hull is computed similarly. See Algorithm 2
in Appendix A.

Given an input sequence of n points, S, in R2,
let us define the constraints for a partition, Π =
{(S1, R1), . . . , (St, Rt)}, where each Ri is a triangle, to
be respectful in the context of computing the convex
hull for S (see Figure 2):

1. The local property for each (Si, Ri) is that Ri is
a triangle containing the points of Si and either Si

forms a sorted subsequence in S or Ri lies under
the convex hull of S.

2. The global compatibility property is that, for
i, j = 1, 2, . . . , t, if Ri does not lie under the convex
hull of S (which means Si is in sorted order in S),
then it will not intersect another range, Rj , for
j ̸= i.

As for the sorting problem, this generalizes the notion
of structurally respectful partitions of Afshani et al. [1],
which is equivalent to the local condition above for
unsorted subsets. Inputs whose structural entropy is
much higher than their range-partition entropy include
sets of n points on a circle given in sorted order.

Theorem 2. Given a set, Q, of n points in R2 the
2DConvexHull algorithm runs in O(n(1 + H(S))) time,
where H(S) is the range-partition entropy of S.

Proof. Let us analyze 2DConvexHull via an
accounting argument where a constant amount of

(a) (b)

Figure 2: Respectful partitions for convex hulls. (a)
The points in the blue triangle are sorted among
themselves but this partition doesn’t take advantage of
that. The entropy is 6

22 log
22
6 + 3

22 log
22
3 + 3

22 log
22
3 +

10
22 log

22
10 ≈ 1.811. (b) This partition takes advantage

of the sortedness. The entropy is 6
22 log

22
6 + 6

22 log
22
6 +

10
22 log

22
10 ≈ 1.540.

work in our algorithm costs one cyber-dollar. Let
Π = {(S1, R1), . . . , (St, Rt)} be a respectful partition of
S with minimum range-partition entropy, H(S). Since
n(1 + H(S)) = n+ n(H(S)), let us focus on the term

n(H(S)) =
∑
Sk∈Π

|Sk| log(n/|Sk|).

Thus, after charging each point in S one cyber-
dollar, we can show that 2DConvexHull runs in time
O(n(1 + H(S))) by showing that the processing we
perform for each set, Sk ∈ Π, contributes at most
O(|Sk| log(n/|Sk|) + 1) additional cyber-dollars to the
running time of our algorithm. Let T denote the
recursion tree for 2DConvexHull, where each node,
v, of T corresponds to a recursive call. Each node v
of T is associated with an interval, Iv = [av, bv], of
x-coordinates for points of S between discovered convex
hull points for ancestors of v in T (or with bv = pmax,
the point with the largest x-coordinate for each node,
v, on the right spine of T).

So, consider a subset, Sk ∈ Π which has the local
property for unsorted sets.

Sk is contained in a triangle, Rk, that is strictly below
the convex hull. We will consider Sk in two parts. Let
p be the vertex of Rk that is opposite the lowest edge.

S
(ℓ)
k is the subset of Sk that is to the left of p. S

(r)
k is

the remaining subset. Let R
(ℓ)
k (similarly R

(r)
k) be the

triangle on the left (similarly right) obtained by splitting

Rk along x = px. S
(ℓ)
k is contained in R

(ℓ)
k andS

(r)
k is

contained in R
(r)
k . Say that S

(ℓ)
k (similarly S

(r)
k) covers

a node v of T if the x-range for R
(ℓ)
k (similarly R

(r)
k)

spans Iv but not Iparent(v).

If a node v is covered by S
(ℓ)
k (similarly S

(r)
k), the edge

between the convex hull points with the x-coordinate

av and bv lie above R
(ℓ)
k (similarly R

(r)
k). During the

CCCG 2025, Toronto, Canada, August 11–15, 2025

recursive call corresponding to v, all points below this

edge are pruned and all points from S
(ℓ)
k (similarly

S
(r)
k) are removed from descendants of v. Thus, the

maximum number of points in S
(ℓ)
k (similarly S

(r)
k)

that survive to level j in T is O(min{|S(ℓ)
k |, ⌈n/2j⌉})

(similarly O(min{|S(r)
k |, ⌈n/2j⌉})). Therefore, the max-

imum number of points in Sk that survive to level j in

T is O(min{|S(ℓ)
k |, ⌈n/2j⌉}) +O(min{|S(r)

k |, ⌈n/2j⌉}) =
O(min{|Sk|, ⌈n/2j⌉}).

Now consider a set Sk that has the local property for
a sorted subset and its range, Rk. Sk also satisfies the
global compatibility condition for Sk. That is, Rk is
triangle that contains Sk such that the points of Sk are
given in sorted order in S and there is no other range
intersecting Rk. We will consider Sk in five parts. Since
Rk is a triangle, there can be at most two continuous
sections of the convex hull that are strictly above Rk.

Let S
(ℓ)
k , S

(m)
k , and S

(r)
k be the subsets of Sk that is to

the left, middle, and right of these sections respectively.

Let S
(mℓ)
k and S

(mr)
k be the subsets of Sk that are below

each of these sections. Let R
(ℓ)
k , R

(mℓ)
k , R

(m)
k , R

(mr)
k , and

R
(r)
k be the intersection of Rk with the corresponding

x-ranges. Say that S
(X)
k covers v if the x-range for R

(X)
k

spans Iv but not Iparent(v).

If S
(X)
k is S

(mℓ)
k or S

(mr)
k , and covers a node v in

T , av and bv are points in the convex hull that are

above S
(X)
k and the points of S

(X)
k will be pruned away

and are removed from any recursive calls associated
with v and its descendants. Thus, the maximum

number of points in S
(X)
k that survive to level j in T

is O(min{|S(X)
k |, ⌈n/2j⌉}).

If S
(X)
k is S

(ℓ)
k , S

(m)
k , or S

(r)
k , and covers a node v in

T , av and bv are in S
(X)
k , and no points above or below

it remain in the recursive call associated with v. Since
S
(X)
k as a subset of Sk is sorted by x-coordinate, during

the recursive call associated with v, our algorithm
recognizes this and computes the convex hull in linear
time and there are no more recursive calls. Thus, the

maximum number of points in S
(X)
k that survive to level

j in T is O(min{|S(X)
k |, ⌈n/2j⌉}).

Therefore, the maximum number of points in Sk

that survive to level j in T is O(min{|S(ℓ)
k |, ⌈n/2j⌉}) +

O(min{|S(mℓ)
k |, ⌈n/2j⌉}) + O(min{|S(m)

k |, ⌈n/2j⌉}) +

O(min{|S(mr)
k |, ⌈n/2j⌉}) + O(min{|S(r)

k |, ⌈n/2j⌉}) =
O(min{|Sk|, ⌈n/2j⌉}).

Let nj denote the total number of points in S that
survive to level j in T , and note that the total time (in
cyber-dollars) charged to the 2DConvexHull algorithm

is proportional to
∑⌈logn⌉

j=0 nj . The proof follows, then,

since
∑⌈logn⌉

j=0 nj ∈ O(n(H(Π) + 1))).

5 Visibility and Lower Envelope Problems

In this section, we show how to apply range-partition
entropy to analyzing some lower envelope and visibility
polygon problems. In these applications, there is no
structural components, however, so the range-partition
entropy is the same as the entropy in these applications
as the entropy used for the sorting problem; hence, our
algorithms also provide geometric applications of the
entropy used for the sorting problem.

Lower envelope. Given a set of ρ disjoint monotone
polygonal chains, S = {S1, S2, . . . , Sρ}, of total size n,
the first problem we study is to compute the piecewise-
linear lower envelope of the chains in S.

Let us define the constraints for a partition, Π =
{(S1, R1), . . . , (St, Rt)}, where each Ri is the polygonal
chain formed by Si, to be respectful in the context of
computing the lower envelope for S (see Figure 3):

1. The local property for each (Si, Ri) is that Ri is
the polygonal chain of Si and Si forms a sorted
subsequence in S.

2. The global compatibility property is that, for
i, j = 1, 2, . . . , t, Ri will not intersect another range,
Rj , for j ̸= i

In this context, each Ri is simply the same as Si,
and is included only for consistency with the definition
of a respectful partition used across problems. Since
this application does not depend on its structural
components, Ri plays no additional role in the analysis.

Let A be a stack-based mergesort algorithm, like
TimSort [16], be a sorting algorithm that leverages
monotonic runs of an input sequence, X, of n elements
to run in O(n(1+H(X))) time, where H(X) is the range-
partition entropy of X (which is the same as the entropy
previously studied for the sorting problem). We show
how to adapt A to computing the lower envelope of
the disjoint monotone chains in S in O(n(1 + H(S)))
time. The algorithm, A, works by maintaining a stack of
maximal non-decreasing runs and merging consecutive
pairs of them using the merge algorithm from mergesort
for merging two sorted sequences according to rules
based on their sizes that leads to the O(n(1 + H(X)))
running time.

Our first adaptation of the algorithm, A, is to
change the merge algorithm to be a merge of two
lower envelopes, where we merge the sequences by x-
coordinates and determine, at each x-coordinate, the
segment with the smallest y-value, compressing the
sequence to eliminate segment endpoints not in the
lower envelope. We assign each lower envelope a weight
calculated as the sum of all contributing segments to
the merged result, rather than the current number of
segments in the lower envelope.

37th Canadian Conference on Computational Geometry, 2025

The adapted version of the algorithm, A, maintains
a stack of active chains. Suppose that the stack con-
tains chains S1, S2, . . . , Sk, with corresponding weights
w1, w2, . . . , wk. We iterate through the input chains,
pushing a new chain onto the stack at each iteration,
as dictated by A. After each insertion, we invoke the
merge procedure to restore A’s invariant conditions on
the stack weights. For example, if A were TimSort, then
we would ensure that the following invariants holds at
the end of each iteration:

wi+2 ≥ wi+1 + wi, (1)

wi+1 ≥ wi. (2)

These conditions guarantee that the weights of se-
quences on the stack in TimSort grow at least as fast as
the Fibonacci numbers, which ensures that the height
of the stack remains logarithmic [2].

To merge two chains as dictated by A, we perform
a linear scan over their segments, selecting the smallest
y-value at each x-coordinate. Since each input chain is
x-monotone and disjoint, the merging process runs in
linear time respect to the total number of contributing
input segments, up to a constant factor. This is analo-
gous to merging two sorted sequences. See Figure 3.

S1

S2

S1

Figure 3: Merging two sets of disjoint monotone chains,
where S1 contains of two sequences and S2 contains one.

Although the current envelope may contain fewer seg-
ments due to pruning of segments after some merges, the
total weight still reflects the work that would have been
done by A over the original input segments, preserving
the same invariants used in A’s merge strategy.

Theorem 3. Given an set, S, of n line segments
partitioned into ρ disjoint monotone chains, we compute
the lower envelope of the chains in S in O(n(1+H(S)))
time, where H(S) is the range-partition entropy of S.

Proof. The proof follows from the analysis of the algo-
rithm, A. For example, Theorem 1 in the analysis of
TimSort by Auger et al. [2] shows that TimSort runs
in O(n + nH(X)) time on an input, X, of length n,
where H(X) is the range-partition entropy of X. the
run-length distribution. Our adaptation of A into a
lower envelope algorithm can be seen as analogous to

A in the sense that each merge in our lower envelope
algorithm runs in time proportional to the time needed
to perform the merges in A. Thus, the running time for
our lower-envelope algorithm is O(n(1 + H(S))).

Visibility polygon. In the next problem we consider,
we are given a convex polygon, P , containing a set
of convex polygonal obstacles, with total complexity
n, and a query point, q, in P ’s interior, the problem
is to compute the region of P that is visible from q.
We assume that P and the convex obstacles in P are
provided as a set of ρ disjoint convex chains, S =
{S1, S2, . . . , Sρ}, where each chain represents either the
outer boundary or an obstacle.

This visibility problem can be reduced to computing
a lower envelope of monotone disjoint sequences, for
which we provided an algorithm above. Namely, at
each point along the chains, the visible segment of the
polygon corresponds to the segment with the minimum
radius with respect to q rather than the minimum y-
value in the lower envelope setting. For each chain, we
prune the vertices outside this range by locating the two
endpoints of the visible window from q. Once pruned,
the remaining chains can be merged using a linear scan
based on the angle each point makes with respect to q.
As before, we maintain the weight of each chain as the
sum of all contributing segments, which increases after
each merge. See Figure 4.

Figure 4: The visibility polygon of a point among
disjoint convex chains.

Theorem 4. Suppose we are given a polygon, P , and
convex obstacles in its interior, which are given as a
collection, S, of ρ disjoint convex chains consisting of a
total of n vertices, where each chain represents the outer
boundary or an obstacle. Then our visibility polygon
algorithm runs in O(n(1 + H(S))) time, where H(S) is
the range-partition entropy of S.

Proof. The proof for the running time follows Theo-
rem 3. Instead of selecting the minimum y-value at each
x-value in the proof of Theorem 3, however, we select
the minimum radius at each angle with respect to the
point q. Thus, our visibility polygon algorithm runs in
O(n(1 + H(S))) time.

CCCG 2025, Toronto, Canada, August 11–15, 2025

References

[1] Peyman Afshani, Jérémy Barbay, and Timothy M.
Chan. Instance-optimal geometric algorithms.
Journal of the ACM, 64(1):A3:1–A3:38, March
2017. doi:10.1145/3046673.

[2] Nicolas Auger, Vincent Jugé, Cyril Nicaud, and
Carine Pivoteau. On the worst-case complexity of
TimSort, 2019. Previously announced at ESA 2018.
arXiv:1805.08612v3.

[3] Jérémy Barbay and Gonzalo Navarro. On com-
pressing permutations and adaptive sorting. Theo-
retical Computer Science, 513:109–123, 2013. doi:
10.1016/j.tcs.2013.10.019.

[4] Sam Buss and Alexander Knop. Strategies for
stable merge sorting. In ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1272–1290.
SIAM, 2019. doi:10.1137/1.9781611975482.78.

[5] Timothy M Chan. Fixed-dimensional linear pro-
gramming queries made easy. In Proceedings of the
Twelfth Annual Symposium on Computational Ge-
ometry, pages 284–290. Association for Computing
Machinery, 1996. doi:10.1145/237218.237397.

[6] Timothy M. Chan. Optimal output-sensitive con-
vex hull algorithms in two and three dimensions.
Discrete & Computational Geometry, 16(4):361–
368, 1996. doi:10.1007/BF02712873.

[7] Timothy M. Chan. Output-sensitive results on
convex hulls, extreme points, and related problems.
Discrete & Computational Geometry, 16(4):369–
387, 1996. doi:10.1007/BF02712874.

[8] William Cawley Gelling, Markus E. Nebel, Ben-
jamin Smith, and Sebastian Wild. Multiway power-
sort. In Symposium on Algorithm Engineering and
Experiments (ALENEX), pages 190–200. SIAM,
2023. doi:10.1137/1.9781611977561.ch16.

[9] R. L. Graham. An efficient algorith for determining
the convex hull of a finite planar set. Information
Processing Letters, 1(4):132–133, 1972. doi:10.

1016/0020-0190(72)90045-2.

[10] Wassily Hoeffding. Probability inequalities for
sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30,
1963. doi:10.1080/01621459.1963.10500830.

[11] Vincent Jugé. Adaptive shivers sort: An alterna-
tive sorting algorithm. ACM Trans. Algorithms,
20(4):31:1–31:55, August 2024. Previously an-
nounced at SODA 2020. doi:10.1145/3664195.

[12] David G. Kirkpatrick and Raimund Seidel.
Output-size sensitive algorithms for finding max-
imal vectors. In 1st ACM Symposium on Com-
putational Geometry (SoCG), page 89–96, 1985.
doi:10.1145/323233.323246.

[13] David G. Kirkpatrick and Raimund Seidel. The
ultimate planar convex hull algorithm? SIAM
Journal on Computing, 15(1):287–299, 1986.
arXiv:https://doi.org/10.1137/0215021,
doi:10.1137/0215021.

[14] Jǐŕı Matoušek. Efficient partition trees. Discrete &
Computational Geometry, 8:315–334, 1992. doi:

10.1007/bf02293051.

[15] J. Ian Munro and Sebastian Wild. Nearly-optimal
mergesorts: fast, practical sorting methods that
optimally adapt to existing runs. In Yossi Azar,
Hannah Bast, and Grzegorz Herman, editors,
26th European Symposium on Algorithms (ESA),
volume 112 of LIPIcs, pages 63:1–63:16. Schloss
Dagstuhl, 2018. doi:10.4230/LIPIcs.ESA.2018.
63.

[16] Tim Peters. listsort.txt, March 21, 2024. URL:
https://github.com/python/cpython/blob/

main/Objects/listsort.txt.

[17] Tim Roughgarden. Beyond worst-case analysis.
Communications of the ACM, 62(3):88–96, 2019.
doi:10.1145/3232535.

[18] Tim Roughgarden. Beyond the Worst-case Anal-
ysis of Algorithms. Cambridge University Press,
2021. doi:10.1017/9781108637435.

[19] Jens Kristian Refsgaard Schou and Bei Wang.
PersiSort: a new perspective on adaptive sorting
based on persistence. In Canadian Conference on
Computational Geometry (CCCG), pages 287–312,
2024.

[20] Tadao Takaoka. Partial solution and entropy.
In Rastislav Královic and Damian Niwinski,
editors, Mathematical Foundations of Computer
Science 2009, 34th International Symposium,
MFCS 2009, Novy Smokovec, High Tatras, Slo-
vakia, August 24-28, 2009. Proceedings, volume
5734 of Lecture Notes in Computer Science,
pages 700–711. Springer, 2009. doi:10.1007/

978-3-642-03816-7_59.

[21] F. Frances Yao, David P. Dobkin, Herbert Edels-
brunner, and Michael S. Paterson. Partitioning
space for range queries. SIAM Journal on Comput-
ing, 18(2):371–384, 1989. doi:10.1137/0218025.

https://doi.org/10.1145/3046673
https://arxiv.org/abs/1805.08612v3
https://doi.org/10.1016/j.tcs.2013.10.019
https://doi.org/10.1016/j.tcs.2013.10.019
https://doi.org/10.1137/1.9781611975482.78
https://doi.org/10.1145/237218.237397
https://doi.org/10.1007/BF02712873
https://doi.org/10.1007/BF02712874
https://doi.org/10.1137/1.9781611977561.ch16
https://doi.org/10.1016/0020-0190(72)90045-2
https://doi.org/10.1016/0020-0190(72)90045-2
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1145/3664195
https://doi.org/10.1145/323233.323246
https://arxiv.org/abs/https://doi.org/10.1137/0215021
https://doi.org/10.1137/0215021
https://doi.org/10.1007/bf02293051
https://doi.org/10.1007/bf02293051
https://doi.org/10.4230/LIPIcs.ESA.2018.63
https://doi.org/10.4230/LIPIcs.ESA.2018.63
https://github.com/python/cpython/blob/main/Objects/listsort.txt
https://github.com/python/cpython/blob/main/Objects/listsort.txt
https://doi.org/10.1145/3232535
https://doi.org/10.1017/9781108637435
https://doi.org/10.1007/978-3-642-03816-7_59
https://doi.org/10.1007/978-3-642-03816-7_59
https://doi.org/10.1137/0218025

37th Canadian Conference on Computational Geometry, 2025

A Pseudocode

In this section, we provide pseudocode descriptions of
our 2D algorithms.

Algorithm 1 2DMaximaSet(S): Given a set of n
points, S, in R2, compute the maxima set, X, of S.

1: if S is sorted or n ≤ 1 then
2: Compute the maxima set for S in O(n) time, add

the maxima points to X, and return.
3: Partition into Sℓ and Sr by median x-coordinate

using a stable method.
4: Compute q ∈ Sr with maximum y-coordinate.
5: Add q to the output set S, and delete q and prune

all points in Sℓ and Sr that are dominated by q.
6: Recursively compute the maxima set for Sℓ, and add

the maxima set of Sℓ to X.
7: Recursively compute the maxima set for Sr, and

add the maxima set of Sr to X.

Algorithm 2 2DConvexHull(S): Given a set of n
points, S, in R2, compute the convex hull, X, of S.

1: Prune all the points strictly below the line between
the leftmost and rightmost points of S.

2: if S is sorted or n ≤ 1 then
3: Compute the convex hull of S in O(n) time, and

return.
4: Partition into Sℓ and Sr by median x-coordinate m

using a stable method.
5: Identify edge qq′ of the convex hull that intersects

the line x = m and prune the points below it.
6: Recursively compute the convex hull for Sℓ.
7: Recursively compute the convex hull for Sr.
8: Concatenate and return.

B 3D Convex Hull

In this section we simplify an algorithm of Afshani et
al. [1] for convex hulls of points in R3, by finding a simple
randomized replacement for a key subroutine used by
Afshani et al. For the set of points S ⊂ R3, we say
that a partition Π of S is structurally respectful if for
each Sk ∈ Π, there is a tetrahedron ∆k that contains
all the points of Sk and lies under the convex hull. The
structural entropy H(Π) of a partition Π is defined as∑

Sk∈Π(|Sk|/n) log(n/|Sk|). The entropy of S is the
minimum over all structurally respectful partitions of
S.

Theorem 5 (Theorem 3.9 in [1]). Given a set, S, of n
points in R3, algorithm hull3d runs in O(n(1+H(S)))
time, where H(S) is the range-partition entropy of S.

In this algorithm, Afshani et al. assume an efficient
subroutine to partition the points using Matoušek’s
partition theorem [14] or the recursive use of the eight-
sectioning theorem [21]. The first of these methods runs
in the required O(n log n) time, but the second requires
O(n6 log n) time. Our contribution for this section
is to show how to find an approximate eight-section
in expected linear time by using random sampling
and combinatorial partitioning to divide the space into
fair enough octants. Recursively doing this gives us
the required O(n log n) time for the subroutine. For
completeness, we provide the description of the convex
hull algorithm using this subroutine in Appendix C.

Algorithm 3 Given a set Q of n points in R3, the
algorithm finds a balanced partition of the points by
dividing the space into octants as a subroutine to
compute the 3D convex hull of Q.

Algorithm EightPartition(Q):

1: Define S be a subset of points, chosen uniformly at
random from Q.

2: Let |S| ≈ n1/10.
3: Define P ← ∅ to store the plane partitions
4: Define O ← ∅ to store the octant partitions
5: for all triplet of points (p1, p2, p3) ∈ S do
6: Define the plane πi passing through p1, p2, p3.
7: for all perturbations of the plane πi do
8: Classify all points as above, on, or below πi.
9: Add this partition to P .

10: for all triplet of planes (π1, π2, π3) ∈ P do
11: Add the resulting partition to O.
12: for all octant partitions do
13: Compute the number of points in each region.
14: if the partition is fair enough then
15: Return this partition.

Lemma 6. For n points in R3, we can find a partition
of this set into octants such that each octant has between
n
16 and 3n

16 points, in expected linear time.

Proof. First, we sample the points with probability
p = n−9/10. By linearity of expectation, the expected
sample size is µ = n1/10. By the multiplicative Chernoff
bound with δ = 0.5, the probability that the sample size

will be between n1/10

2 and 3n1/10

2 is at least 1−2e−
n1/10

12 .
We repeat the sampling process until the sample size
falls within this range.

Partitioning planes are generated by selecting three
points from this subset. These three points define a
plane in 3D space. We slightly perturb this plane such
that each of the three points lies either above, on, or
below the plane. This results in 27 distinct ways in
which the three points can define the plane. Since
there are O(n1/10) points in the sample, the number

CCCG 2025, Toronto, Canada, August 11–15, 2025

of ways to choose three points from this sample is
O(n3/10), and for each combination of three points,
there are 27 distinct partitions. Therefore, we obtain
at most 27n3/10 unique partitions from single planes.
To construct a full division into octants, three planes
are combined, resulting in up to O(n9/10) possible
partitions of the space into eight regions.
The algorithm examines these partitions to find one

that distributes the points evenly across all octants. We
are guaranteed that there is such a fair partition due
to [21]. Because checking whether a single partition is
balanced takes O(n1/10) time, the runtime is O(n).

Consider a subset of the original set of points that
has cn points. The expected number of points that are
sampled from this subset is cn1/10. By a special case
of Hoeffding’s inequality [10], the probability that the
fraction of points that are in this subset among all points
in the sample deviates from c by more than 1/16 is less

than 2e
−n1/10

128 .
After getting a partition that evenly divides the

sample into octants, we check if the same partition also
divides all the points evenly with every octant having
between n

16 and 3n
16 points. By the union bound, the

probability that at least one octant falls outside this

range is less than 16e−
n1/10

128 . If any octant falls outside
this range, we repeat the sampling. The expected
number of times we would have to repeat is less than
2.

Recursive application of this method gives us the
following lemma which corresponds to Lemma 3.3 in [1]
in the case where the points are in R3.

Lemma 7. For any set of points Q in R3, we can
partition Q into r subsets Q1, . . . , Qr, each of size
Θ(n/r) and find r polyhedral cells γ1, . . . , γr each with
O(log r) faces such that Qi is contained in γi and every
plane intersects with O(rlog8 7) cells. We can do this in
O(n log r) time in expectation.

C 3D Convex Hull Algorithm

For completeness we present here hull3d, the al-
gorithm of Afshani et al. [1] for three-dimensional
convex hulls, but replacing their partitioning subroutine
by our linear-time approximate eight-partition from
Appendix B.

Algorithm 4 Given a set Q of n points in R3, the
algorithm finds the convex hull of the points.

Algorithm hull3d(Q):

1: for j = 0, 1, . . . , ⌊log(δ log n)⌋ do
2: Partition Q into rj = 22

j

subsets Q1, . . . , Qrj and
cells γ1, . . . , γrj by Lemma 7.

3: for i = 1, . . . , rj do
4: if γi is strictly below the upper hull of Q then

prune all points in Qi from Q.
5: Compute the upper hull of the remaining points

directly.

Steps 3 and 4 are done using Lemma 3.8 from [1],
which refers to [5–7]. Step 5 is done using any worst case
optimal convex hull algorithm which takes O(n log n)
time.

	Introduction
	Range-Partition Entropy
	2D Maxima Set
	2D Convex Hull
	Visibility and Lower Envelope Problems
	Pseudocode
	3D Convex Hull
	3D Convex Hull Algorithm

