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2D Convex Hull

Definition
The convex hull of a set of points is the smallest convex polygon
that contains the set.
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Worst Case

Theorem
The 2D convex hull of n points can be computed in Θ(n log n) time
in the worst case.
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Output Sensitive

Theorem (Kirkpatrick and Seidel [1], Chan [2])
The 2D convex hull of n points can be computed in Θ(n log h) time
in the worst case, where h is the number of points on the hull.
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Entropy-Bounded

Theorem (Afshani, Barbay, Chan [3])
The 2D convex hull of a set S of n points can be computed in
Θ(n(H(S) + 1)) time in the worst case, where H(S) is the
structural entropy of S .
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Respectful Partition

Definition (Afshani, Barbay, Chan [3])
A partition Π of S is respectful if, for every disjoint subset Sk ∈ Π,
Sk is either

1 a singleton
2 or can be enclosed by triangle ∆k whose interior lies under the

convex hull of S .

(a) Harder point set. (b) Easier point set.
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Structural Entropy

Definition
The entropy H(Π) of a partition Π is −

∑ |Sk |
n log |Sk |

n .

Definition
The structural entropy H(S) of a set S is the minimum entropy
over all respectful partitions.

(a) Higher-entropy partition. (b) Lower-entropy partition.
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Our Definition

Definition
A partition Π = {(S1,R1), . . . , (St ,Rt)} of S , where each Ri is a
geometric range (triangle for convex hulls), is respectful if

1 for each (Si ,Ri ), Si is contained in Ri , and
1 Si forms a sorted subsequence in S ,
2 or Ri lies under the hull of S ,

2 and for i , j = 1, 2, . . . , t, if Ri does not lie under the hull of S
(which means it is sorted in S), then it will not intersect
another range, Rj , where j ̸= i .
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Our Definition (contd.)

Respectful partition without sorted subsets.
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Our Definition (contd.)

Respectful partition with sorted subsets.
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Range-Partition Entropy

Definition
The range-partition entropy H(S) of a set S is the minimum
entropy over all respectful partitions.

(a) Higher-entropy partition. (b) Lower-entropy partition.
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Our Result

Theorem
The convex hull of a set S of n points can be computed in
O(n(H(S) + 1)) time in the worst case, where H(S) is the
range-partition entropy of S .
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Our Algorithm

Compute the upper hull.

Entropy-Bounded Computational Geometry Made Easier and Sensitive to Sortedness 14 / 42



Introduction Range-Partition Entropy 2D Convex Hull 3D Convex Hull Maxima Set Visibility References

Our Algorithm (contd.)

Divide the points into right and left subsets at the median.
Find the bridge edge intersecting the median line.
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Our Algorithm (contd.)

The points below the bridge edge cannot be in the upper hull.
Prune the points below the edge.
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Our Algorithm (contd.)

The points below the edge connecting the right (left)-most point to
the bridge’s right (left) endpoint cannot be in the upper hull.
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Our Algorithm (contd.)

Check if the left and right subsets are sorted.
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Our Algorithm (contd.)

If a subset is sorted, compute the upper hull in linear time [4].
Otherwise, solve that subset recursively.
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Proof

• Accounting argument.
• Show Sk ∈ Π contributes at most O(|Sk | log(n/|Sk |) + 1)

cyber-dollars.
• Recursion tree T , where each node v is a recursive call.
• Node v contains the x-interval Iv = [av , bv ].
• Sk covers v if its x-range spans Iv but not Iparent(v).

1 Case 1: Sk is unsorted.
2 Case 2: Sk is sorted.

• Cost proportional to
∑⌈log n⌉

j=0 nj , where nj total points survive
to level j in T .
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Proof: Sk is Unsorted

Rk lies on or below at most two hull edges.
Divide Sk at the point across from the lowest edge.
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Proof: Sk is Unsorted (contd.)

Both R
ℓ/r
k are strictly below the hull.

If a node v covers S
ℓ/r
k , a hull edge prunes them.

(S
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(r)
k )(S

(`)
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k )
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Proof: Sk is Sorted

At most, two sections of the hull can be above Rk .
Divide Sk into five parts at hull-edge intersections.
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Proof: Sk is Sorted (contd.)

If a node v covers S
(mℓ)/(mr)
k , a hull edge prunes them.
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Proof: Sk is Sorted (contd.)

If a node v covers S
(ℓ)/(m)/(r)
k , no points lie above or below.

The subsets above the hull are solved in linear time.
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Proof

(S
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(a) Case 1: Sk is unsorted.
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(b) Case 2: Sk is sorted.

Proof by counting argument on the recursion tree.
The points in Sk that survive to level j is O(min{|Sk |, ⌈ n

2j ⌉}).

⌈log n⌉∑
j=0

nj ≤
⌈log n⌉∑
j=0

∑
k

min
{
|Sk |,O

( n

2j
)}

∈ O(n(H(Π) + 1))
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3D Convex Hull

There is no notion of sortedness in 3D, so the range-partition
entropy is equivalent to the structural entropy.

Definition
A partition Π of S is respectful if for each Sk ∈ Π, there is a
tetrahedron ∆k that contains all the points of Sk and lies under the
3D convex hull of S .

Entropy-Bounded Computational Geometry Made Easier and Sensitive to Sortedness 27 / 42



Introduction Range-Partition Entropy 2D Convex Hull 3D Convex Hull Maxima Set Visibility References

Previous Result

Theorem (Afshani, Barbay, Chan [3])
The 3D convex hull of a set S of n points can be computed in
Θ(n(H(S) + 1)) time in the worst case, where H(S) is the
structural entropy of S .

Theorem (Matoušek [5])
Matoušek’s partition theorem runs in O(n) time.

Theorem (Yao, Dobkin, Edelsbrunner, Paterson [6])
Recursive use of eight-sectioning theorem runs in O(n6 log n) time.
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Our Result

Theorem (Afshani, Barbay, Chan [3])
The 3D convex hull of a set S of n points can be computed in
Θ(n(H(S) + 1)) time in the worst case, where H(S) is the
range-partition entropy of S .

Lemma
We can find a partition points into eight regions, called octants,
containing roughly the same number of points in O(n).
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Our Subroutine

We simplify the recursive eight-sectioning subroutine.

1 Randomly sample n
1
10 points.

2 For every 3 points, define a plane ⇒ O(n
3
10 ) planes.

3 For every 3 planes, define a partition ⇒ O(n
9
10 ) partitions.

4 Searching O(n
9
10 ) partitions, each O(n

1
10 ) ⇒ O(n) time.

Achieves Θ(n(H(S) + 1)) time to compute the 3D convex hull.
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Maxima Set

Definition
The maxima set are the points that are not dominated (greater x-
and y-coordinates) by any other point.

The red points are the maxima set.
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Our Result

Theorem
The maxima set of a set S of n points can be computed in
O(n(H(S) + 1)) time in the worst case, where H(S) is the
range-partition entropy of S .

(a) Ignores sorted subsets. (b) Leverages sorted subsets.

Subsets are enclosed in axis-aligned rectangles.
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Sorting Entropy

Definition
The entropy H(S) of a sequence S of n elements is

−
∑ |Si |

n
log

|Si |
n

,

where each Si is the i-th monotone run decomposition of S .

S = ( 12, 10, 6, 4︸ ︷︷ ︸
first run

, 7, 9, 14︸ ︷︷ ︸
second run

, 0, 3, 5, 11, 16︸ ︷︷ ︸
third run

, 15, 13, 8, 2, 1︸ ︷︷ ︸
fourth run

)

H(S) = −( 4
17 log

4
17 + 3

17 log
3
17 + 5

17 log
5
17 + 5

17 log
5
17 )

Sorting has a lower bound of Ω(n(H(S) + 1)).
Range-partition entropy subsumes sorting entropy.
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Lower Envelope

Definition
The lower envelope is the point-wise minimum of a finite set of
functions.
We focus on non-crossing x-monotone chains.

S1

S1

S1

S1

S2

S2

Merging two lower envelopes.
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Our Result

Theorem
The lower envelope of a set S of n line segments partitioned into
disjoint monotone chains can be computed in O(n(H(S) + 1)) time
in the worst-case, where H(S) is the range-partition entropy of S .

S1

S1

S1

S1

S2

S2

Merging two lower envelopes.
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Our Algorithm

Adapted from stack-based mergesort algorithm, TimSort [7] [8].
• Maintain a stack of maximal non-decreasing runs.
• Merge consecutive sequences by linear scan like mergesort.
• Merge conditions based on their weight (total size) leads to a

complexity of O(n(H(S) + 1)) time.
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Visibility Polygon

Definition
The visibility polygon is the region of a plane that can be seen
from a specific point, given a set of obstacles.

Visibility polygon of convex obstacles.
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Our Result

Theorem
Given a collection S of disjoint convex chains of n vertices,
representing obstacles, the visibility polygon can be computed in
O(n(H(S) + 1)) time in the worst case, where H(S) is the
range-partition entropy of S .

Visibility polygon of convex obstacles.
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Summary

Range-partition entropy extends the existing measure of
structural entropy to capture both structure and sortedness.
New entropy-bounded algorithms:

1 Convex hull
2 Maxima set
3 Lower envelope
4 Visibility polygon

Our framework is a more powerful and general approach to
adaptive geometric algorithms.

Entropy-Bounded Computational Geometry Made Easier and Sensitive to Sortedness 39 / 42



Introduction Range-Partition Entropy 2D Convex Hull 3D Convex Hull Maxima Set Visibility References

References

[1] D. G. Kirkpatrick and R. Seidel, “The ultimate planar convex
hull algorithm?,” SIAM Journal on Computing, vol. 15, no. 1,
pp. 287–299, 1986.

[2] T. M. Chan, “Optimal output-sensitive convex hull algorithms
in two and three dimensions,” Discrete & Computational
Geometry, vol. 16, no. 4, pp. 361–368, 1996.

[3] P. Afshani, J. Barbay, and T. M. Chan, “Instance-optimal
geometric algorithms,” Journal of the ACM, vol. 64,
pp. A3:1–A3:38, Mar. 2017.

[4] R. L. Graham, “An efficient algorith for determining the convex
hull of a finite planar set,” Information Processing Letters,
vol. 1, no. 4, pp. 132–133, 1972.

Entropy-Bounded Computational Geometry Made Easier and Sensitive to Sortedness 40 / 42



Introduction Range-Partition Entropy 2D Convex Hull 3D Convex Hull Maxima Set Visibility References

References (contd.)

[5] J. Matoušek, “Efficient partition trees.,” Discrete &
Computational Geometry, vol. 8, pp. 315–334, 1992.

[6] F. F. Yao, D. P. Dobkin, H. Edelsbrunner, and M. S. Paterson,
“Partitioning space for range queries,” SIAM Journal on
Computing, vol. 18, no. 2, pp. 371–384, 1989.

[7] T. Peters, “listsort.txt,” March 21, 2024.

[8] N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau, “On the
worst-case complexity of TimSort,” 2019.
Previously announced at ESA 2018.

Entropy-Bounded Computational Geometry Made Easier and Sensitive to Sortedness 41 / 42



Introduction Range-Partition Entropy 2D Convex Hull 3D Convex Hull Maxima Set Visibility References

+h{an}k γ0∪

Entropy-Bounded Computational Geometry Made Easier and Sensitive to Sortedness 42 / 42


	Introduction
	Range-Partition Entropy
	2D Convex Hull
	3D Convex Hull
	Maxima Set
	Visibility
	References

