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Introduction

Instance-optimal algorithms achieve performance as good as any
correct algorithm on every input instance up to a constant factor
with respect to a given measure.

Real-world data often has underlying patterns or structures that are
not captured by traditional worst-case analysis. These hidden prop-
erties can be leveraged to improve the efficiency of algorithms.

We study how to exploit input sortedness in geometric problems.

Motivation & Problem

2D Maxima Set

Previous work focused on output size and spatial distribution for
instance-optimality. However, the role of input sortedness remains
unexplored in computational geometry.

» Sortedness: Measures how close the input is to being sorted,
such as through inversions, removals, and runs.

- Shannon sequential entropy: Measures the degree of order.
- Shannon structural entropy: Measures the placement and spread.

Our goal: Define a complexity measure that captures sortedness and
structure to design and analyze algorithms that adapt to it.

New Complexity Measure

Shannon range-partition entropy combines Shannon sequential
and structural entropy and subsumes both.

Glven a set, S, of n points, a partition, II, of the set into disjoint
subsets Is respectful if:

1. Local property: Fulfills properties within a subset.
2. Global compatibility: Fulfills dependencies between subsets.

The entropy, H(II), of a partition, IT = {(S1, R1), ..., (S, Ry}, is
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The range-partition entropy, H(S), of S is the minimum H(II) over
all respectful partitions.
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Problem: Find the subset of points that are not dominated by any
other point (no other point has both greater x- and y-coordinates).

Algorithm: Divide-and-conquer algorithm [1, 3]. Before recursively
solving a subset, check if the points are sorted; If so, compute the
maxima set in linear time.

Analysis: Leverages structure and sortedness. Runs in O(n(1 +
H(S))) time, where H(S) is the range-partition entropy of S.
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Figure 1. Respectful partitions for maxima set. The points in the blue shaded rectangle are sorted among themselves.
(a) A respectful partition without using sorted subsets. (b) A respectful partition using both types of sets, leveraging
sortedness.

2D Convex Hull

Problem: Find the smallest convex polygon enclosing all points.

Algorithm: Divide-and-conquer algorithm [1, 4]. Before recursively
solving a subset, check if the points are sorted; if so, compute the
convex hull in linear time.

Analysis: Leverages structure and sortedness. Runs in O(n(1 +
H(S))) time, where H(S) is the range-partition entropy of S.

Figure 2. Respectful partitions for convex hull. The points in the blue shaded triangle are sorted among themselves.
(a) A respectful partition without using sorted subsets. (b) A respectful partition using both types of sets, leveraging
sortedness.
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3D Convex Hull

Problem: Find the smallest convex polyhedron enclosing all points.

Algorithm: Iteratively partition and prune [1]. Partitioning via eight-
sectioning in expected linear time with random sampling and combl-
natorial partitioning. Recursive partitioning runs in O(nlogn) time.

Analysis: Leverages structure with improved partitioning. Runs in
On(1+H(S))) time, where H(S) is the range-partition entropy of S.

Lower Envelope

Problem: Find the vertical point-wise minimum of a set of disjoint
monotone line segments.

Algorithm: Stack-based mergesort algorithm with redefined weights.

Analysis: Leverages monotonic runs similar to TimSort [2]. Runs in
O(n(1+H(S))) time, where H(S) is the range-partition entropy of S.

Visibility Polygon

Problem: Find the radial point-wise minimum, the visible region, from
a point inside a convex polygon.

Algorithm: Stack-based mergesort algorithm with redefined weights.

Analysis: Reduction from lower envelope. Runs in O(n(1 + H(S)))
time, where H(.S) is the range-partition entropy of S.
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Figure 3. (@) Merging two sets of disjoint monotone chains. S} has two sequences, S, has one. (b) The visibility
polygon of a point among disjoint convex chains.

Conclusion

Sortedness is a powerful but overlooked property in instance-optimal
analysis. By leveraging sortedness, we can design algorithms that are
more efficient than traditional worst-case approaches. We demon-
strated how algorithms for classical geometric problems can benefit
from recognizing and exploiting input sortedness.
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