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Introduction

Instance-optimal algorithms achieve performance as good as any

correct algorithm on every input instance up to a constant factor

with respect to a given measure.

Real-world data often has underlying patterns or structures that are

not captured by traditional worst-case analysis. These hidden prop-

erties can be leveraged to improve the efficiency of algorithms.

We study how to exploit input sortedness in geometric problems.

Motivation & Problem

Previous work focused on output size and spatial distribution for

instance-optimality. However, the role of input sortedness remains

unexplored in computational geometry.

Sortedness: Measures how close the input is to being sorted,

such as through inversions, removals, and runs.

Shannon sequential entropy: Measures the degree of order.

Shannon structural entropy: Measures the placement and spread.

Our goal: Define a complexity measure that captures sortedness and

structure to design and analyze algorithms that adapt to it.

NewComplexity Measure

Shannon range-partition entropy combines Shannon sequential

and structural entropy and subsumes both.

Given a set, S, of n points, a partition, Π, of the set into disjoint

subsets is respectful if:

1. Local property: Fulfills properties within a subset.

2. Global compatibility: Fulfills dependencies between subsets.

The entropy, H(Π), of a partition, Π = {(S1, R1), . . . , (St, Rt)}, is

H(Π) = −
t∑

i=1

(
|Si|
n

)
log

(
|Si|
n

)
.

The range-partition entropy, H(S), of S is the minimum H(Π) over
all respectful partitions.
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2D Maxima Set

Problem: Find the subset of points that are not dominated by any

other point (no other point has both greater x- and y-coordinates).

Algorithm: Divide-and-conquer algorithm [1, 3]. Before recursively

solving a subset, check if the points are sorted; if so, compute the

maxima set in linear time.

Analysis: Leverages structure and sortedness. Runs in O(n(1 +
H(S))) time, where H(S) is the range-partition entropy of S.
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Figure 1. Respectful partitions for maxima set. The points in the blue shaded rectangle are sorted among themselves.

(a) A respectful partition without using sorted subsets. (b) A respectful partition using both types of sets, leveraging

sortedness.

2D Convex Hull

Problem: Find the smallest convex polygon enclosing all points.

Algorithm: Divide-and-conquer algorithm [1, 4]. Before recursively

solving a subset, check if the points are sorted; if so, compute the

convex hull in linear time.

Analysis: Leverages structure and sortedness. Runs in O(n(1 +
H(S))) time, where H(S) is the range-partition entropy of S.
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Figure 2. Respectful partitions for convex hull. The points in the blue shaded triangle are sorted among themselves.

(a) A respectful partition without using sorted subsets. (b) A respectful partition using both types of sets, leveraging

sortedness.

3D Convex Hull

Problem: Find the smallest convex polyhedron enclosing all points.

Algorithm: Iteratively partition and prune [1]. Partitioning via eight-

sectioning in expected linear time with random sampling and combi-

natorial partitioning. Recursive partitioning runs in O(n log n) time.

Analysis: Leverages structure with improved partitioning. Runs in

O(n(1+H(S))) time, where H(S) is the range-partition entropy of S.

Lower Envelope

Problem: Find the vertical point-wise minimum of a set of disjoint

monotone line segments.

Algorithm: Stack-based mergesort algorithmwith redefined weights.

Analysis: Leverages monotonic runs similar to TimSort [2]. Runs in

O(n(1+H(S))) time, where H(S) is the range-partition entropy of S.

Visibility Polygon

Problem: Find the radial point-wiseminimum, the visible region, from

a point inside a convex polygon.

Algorithm: Stack-based mergesort algorithmwith redefined weights.

Analysis: Reduction from lower envelope. Runs in O(n(1 + H(S)))
time, where H(S) is the range-partition entropy of S.
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Figure 3. (a) Merging two sets of disjoint monotone chains. S1 has two sequences, S2 has one. (b) The visibility
polygon of a point among disjoint convex chains.

Conclusion

Sortedness is a powerful but overlooked property in instance-optimal

analysis. By leveraging sortedness, we can design algorithms that are

more efficient than traditional worst-case approaches. We demon-

strated how algorithms for classical geometric problems can benefit

from recognizing and exploiting input sortedness.
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